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Abstract- Motion is very easy between two points just like for straight line motion. Constant objects 

need acceleration for speed up at starting point and after reaching highest velocity, it needs to 

deceleration to stop at end point of the straight line. Suppose there are some turning points of a linear 

curve, then moving object along the curve will be very jerky at the turning points. This is very unlike 

how motion happens in the real world and this should be avoided in animations. The objective of this 

paper is to analysis motion for different kinds of curves that can be formed from same control points 

and analyze motion characteristics along a path for animation.  
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1. INTRODUCTION 

 

There are two types of curve linear and no-linear. 

Linear curves follow all of the sample points by 

straight line connection and non-linear 

interpolation follows all sample points but not as 

straight line. For interpolation, keys are the 

sample points of the curve that represents actual 

locations where curve should pass through all 

given sample points.         

 

           
(a)          (b) 

Figure 1 (a) Linear and (b) Non-linear interpolation 

for five control points 

 

From the figure 1, both curves are interpolating 

all key-frames. First curve is linear whereas 

second curve is non-linear and more realistic 

movement. We have another curve that is 

approximation where only two end points are 

interpolated. Other points are measuring the 

control the shape of the curve. Bezier and 

Hermite curve is one of the approximation 

curves. 

  

(a)                            (b) 

Figure 2 Approximation curve using four control 

points 

From figure 2, curves are not passed sample 

points exactly except two end points that is 

approximation curve. Smoothness of a curve is 

very important for a motion according to curve. 

How can we measure smoothness of a curve? 

Simply we can measure it by continuity of a 

curve. There is some continuity such as  

 Positional continuity (C
0
) is a small change 

in the value of the parameter always results 

in a small change in the value of the curve 

function.  

 Tangential continuity (C
1
) is a small change 

in the value of the parameter always results 

in a small change in the first derivative of 

the curve function.  

 Curvature continuity (C
2
) is a small change 

in the value of the parameter always results 

in a small change in the second derivative of 

the curve function.  

 

        
(a)       (b)         (c) 

Figure 3 (a) positional continuity (C0) (b) tangential 

continuity (C1) (c) Curvature continuity (C2) 

 

We can express a curve using three formats like 
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parametric, explicit and implicit that are given 

below respectively. 

__________________________ 
A conference paper was submitted on Global Engineering, 

Science and Technology 2012.  

   

                ,                           ,               

 

Parametric form of a equation are given below 

that can form a Bezier curve for four control 

points.  

 

 

 

 

 

 

Where P0, P1, P2, P3 are four control points that is 

shown in figure 2 and  

 

 

 

 

 

The matrix form of the above parametric 

equation is 

 

 

 

 

 

 

The above matrix form equation is for Bezier 

curve. Bezier curve must have two properties like 

C
1
 continuity and convex hull with local control. 

By constructing G1 quadratic Bézier curves that 

are satisfying given positions and arbitrary unit 

tangent vectors conditions (Gu, 2009). Bezier 

curves and Hermite curves are highly similar. 

The key difference between the two curves lies in 

what the user needs to specify to get the curve. In 

a Bezier curve, the control points specify the 

shape of the curve by defining a convex hull for 

the curve. The above equation P(u) and figure 2 

shows how the parametric equation of the curve 

can be obtained if we know the 4 control points. 

(Ferdous, 2008) presents novel contributions to 

Bezier curve theory, with the introduction of 

quasi-Bezier curves, which seamlessly integrate 

localised control point information into the 

inherent global Bezier framework, with no 

increase in either the number of control point or 

order of computational complexity. A quadratic 

trigonometric Bézier curve with single shape 

parameter which is analogous to quadratic Bezier 

curve is introduced (Bashira, 2012) that is 

adjusted the shape of the curve as desired, by 

simply altering the values of shape parameter, 

without changing the control polygon. In Hermite 

curve, the control points specify the end points 

and the tangents to the end points. So the curve is 

defined as the simplest curve that passes through 

the end points and is tangential to these end 

points.  

 

 

 

 

 

 

2. LITERATURE REVIEW 

 

The demand of motion is significantly increasing 

in animated movie industry. There are two 

threads for generating motion such as using 

examples and controllers. A system generates 

multiple motions (Arikan, 2002) that satisfied a 

given set of constraints. A knowledge-based 

methods approach that incorporate dynamics 

constraints and uses dynamics simulations to 

generate motion (Multon, 1999). An overview of 

the automatic motion planning (Latombe, 1999) 

and human walking or running can be found in 

(Bruderlin, 1996). An acting-based animation 

system for creating and editing character 

animation at interactive speeds are introduced by 

(Dontcheva, 2003). Motion analysis and 

interpolation synthesis (Li, Wiley, 2002, 1997) 

for articulated figures are researched by (Lee, 

Lamoure, 2000, 1996). There are many 

correlations between joint actions in human and 

animal motion. These correlations are especially 

clear for a repetitive motion like walking. There 

are some advantages of these relationships to 

synthesize degrees of freedom (Pullen, Kovar, 

2002). A technique for interpolating between 

motions derived from live motion capture or 

produced through traditional animation tools 

introduced in (Rose, 1998). A new scheme for 

planning natural-looking locomotion of a biped 

figure (Choi, 2002) are generated to facilitate 

rapid motion prototyping and task-level motion 

generation. They need to provide start and goal 

positions in a virtual environment, this scheme 

gives a sequence of motions to move from the 

start to the goal using a set of live-captured 

motion clips. A composite curve made by two 

quadratic Bezier curves to satisfy the endpoint 

constraints with both positions and directions of 

unit tangent vectors. The composite curve has the 

flexibility to obtain different shape (Gu, 2009).  

 

3. METHODOLOGY 

 

One of the most common kinds of motion that we 

see in animation and robotics is ease in ease out 

motion. We were demonstrating ease in ease out 

motion and analyzed characteristics of motion for 

using distance-time function and velocity-time 

 

PMU

t

t

1

0

H

TuP

P

P

uuuuP

















































)(

0001

0100

1233

1122

1)(
1

0

23

3

3

2

2

2

1

3

0

)(

)1(3)(

)1(3)(

)1()(

uub

uuub

uuub

uub









 

PMU B

TuP

P

P

P

P

uuuuP



















































)(

0001

0033

0363

1331

1)(

3

2

1

0

23










3

0

33221100

23

)()(

)()()()()(

)(

i

ii ubPuP

ubPubPubPubPuP

uuuuP dcba

)(

)(

ugy

ufx




0),( yxf )(xfy 



 

 

 3 

function.  

 

 

 

1.1. Distance-Time Function 

 

This function will be C
1
 continuous and velocity 

will be changed smoothly over time.  If suddenly 

change the velocity of moving objects, then this 

curve is not C
1
 continuous. It is easy to control 

the movement of object based on the velocity. 

 

Traveled distance (t) = v (t).∆    (1) 

 

Where v (t) is velocity at time t and Δt is time 

step. 

 

We have to normalize the time t that is defined in 

the range of 0.0 and 1.0 and distance is 

normalized in the range of 0.0 to 1.0 with C
1
 

continuity in our experiment.  

 

1.1.1. Ease function without constant speed 

 

Ease function is the motion control function. It is 

starting slowly, speed up, and then slow down.  It 

is used sine curve which is mapping the time t = 

0.0 to 1.0 into the domain and Θ = -π/2 to π/2. 

We are mapping the range of the sine function -

1.0 to 1.0 into the distance range of 0.0 to 1.0 that 

is shown in figure 4.  

 
 

    

 
Figure 4 sine curves is working as ease function 

without constant speed 

 

 

       

       (2) 

 

 

       (3) 

 

 

From the velocity function, we will never have a 

constant speed over any interval using ease 

function from equation 3. 

 

1.1.2. Ease function with constant speed 

 

It is combined a sine curve and a line segment. 

From the figure 5, there are three sections. 

Section A works as acceleration of sine curve, 

section B works as constant velocity using line 

segment and section C is working as deceleration 

of sine curve. The slope of junction point marked 

as circle is 1.0.  

 
Figure 5 Ease function with constant speed 

 

Section A: acceleration 

Time t = 0.0 to k1 into the domain Θ = -π/2 to 0.0 

The range of the sine function -1.0 to 0.0 into the 

distance range of 0.0 to k1/ (π/2)  

 

Distance-time function:  

 

                     (4)

    

Velocity function:  

 

       (5) 

 

 

Section B: constant speed 

Line that passes through the locations                  

 

  

 

And the equation of a line segment 

       (6) 

Distance-time function  

 

       (7) 

 

Velocity function      (8) 

 
Section C: deceleration 

Time t = k2 to 1.0 into the domain Θ = 0.0 to 
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π/2 and the range of the sine function 0.0 to 1.0 

into the distance range of                         

 

 

to  

 

 

Distance-time function 
 

 

 

       (9) 

 

Velocity function 

 

     (10) 

 

Total distance traveled is not 1.0. 

 

     (11) 

 

Normalized distance traveled ease (t),  

 

     (12) 

 

 

 

1.2. Velocity-Time Function 

 

Velocity is more intuitive than distance. It is 

easier to plan a motion by specifying speed up, 

slow down and constant velocity. Slope indicates 

acceleration and area under curve indicates 

distance traveled. We are used normalized time 

and distance. We had seen that how discontinuity 

in the path gave jerky and unrealistic motion. 

Similarly, if a moving body suddenly reaches its 

max velocity from an initial velocity of 0, this 

motion seems very unrealistic. A more realistic 

motion would be, if the body accelerated to that 

max velocity and instead of stopping suddenly 

after movement, it should slowly decelerate to a 

stop. This kind of motion will have a trapezoidal 

velocity time function as shown in figure 6. 

  
Figure 6 Ease using velocity-time function 

 

As can be seen from the figure, there are also 

three parts to the motion A, B and C which refers 

to the period of acceleration, constant speed and 

deceleration respectively. The shape of the 

trapezoid is defined by three parameters, t1, t2 

and v. The term ‘v’ is the maximum velocity; t1 

and t2 are normalized times that define how long 

A, B and C last. Since the distance function of 

the object moving with this velocity is assumed 

to be normalized, the trapezoid ends at t= 1 and 

starts at t=0. The value of v (the maximum 

velocity) is between t1 and t2. All these values are 

interdependent and if two of them are specified 

the third can be obtained by using one of the 

following equations: 

 

 

 

     (13) 

 

With constraint  

 

     (14) 

 

 

     (15) 

 

     (16) 

 

 

     (17) 

 

Once the values of all three parameters are 

obtained, we can find the value of the normalized 

distance using the following equations: 

 

For 0≤t≤t1: 

 

For t1≤t≤t2: 

 

For t2≤t≤0  

 

 

 

The smooth motion of a round object along the 

specified path can easily be traced using these 

three equations. It is possible to modify motion 

(Dontcheva, 2003) by changing the control points 

of curve. We obtained distance from the motion 

along the path equations are normalized 

distances. These need to be converted into the 

parameter which can be used in the equation so 

that we can find its position on the curve. In other 

words, we need to convert the value of s obtained 

into a value of u to be used in the curves. An 

efficient method for doing this would be to use 

an arc length table. 
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1.3. Controlling Motion  

 

Specifically, a distance-time function s(t) is 

controlling the movement along the curve path. 

s(t) determines how far the object should travel at 

a time t. we specified a distance-time function 

s(t) and velocity-time function v(t) to control the 

movement along the curve path. We can control a 

motion using s(t).  

 

Step 1: Starting time t = 0 

Step 2: At t, determine u such that Larc(u) = s(t) 

Step 3: Put the object at P(u) 

Step 4: Increment the time step, t = t + Δt 

Step 5: Repeat until t = tend 

 

A parameterized arc length table is used to link 

distance travelled s to the value of the parameter 

u. We can better maintain (Gleicher, 2001) the 

dynamics of the motion using parameterization. 

Sampling points at regular intervals of u are 

taken and the value of s for each of these 

parameter values is found. For example, if we 

decide on a resolution of 0.05, then values of s 

for u=0, u=0.05, u =0.10 are found and stored in 

the form of a table. So once we obtain the value 

of the total distance travelled, we can 

approximate the value of u for that distance by 

finding the closest value of u from the table and 

then approximating using ratios and proportions. 

It is intuitive from the fact that we use linear 

interpolation that the accuracy of this method is 

highly dependent on resolution used.   

 

4. EXPERIMENTAL RESULTS 

 

Our developed system has been made in such a 

way that user can intuitively use as application. 

Helpful tool, tips, texts and status messages have 

been incorporated to improve usability. The 

application window looks as Figure 8. 

 

 
Figure 7  Screenshot of application window 

 

There are four major panels in our system 

 The menu bar on top which just has an 

option to see details of the system and to 

exit.  

 A status bar to see what result your current 

action has done and to give advice on what 

is wrong. 

 A button panel that helps the user chose 

options 

 A drawing board where all the drawing and 

animation takes place. 

By doing these steps the user can first take a 

look at the curve he constructed. He can then 

setup a motion. Once the motion is set up and 

started, the user can see the path followed by 

the ball and he can also see the rate at which 

the velocity is changing on a graph that is 

generated. Our developed system shows 

smooth motion along a created path for a 

round object in Figure 9. 

 

             

 
Figure 8 Different curve construction interfaces 

 

 
Figure 9 Velocity-time graphs for smooth motion 

along constructed curve 

 

5. DISCUSSIONS 

 

There were some interesting problems and 

challenges that we had to tackle while trying to 

develop a motion along a curve. We faced a 

challenge to design Hermite curve. The key 

difference of Hermite curve from a Bezier curve 

is in the way that it is specified. For creating a 

useful user interface, the best design have been 

for the user to first click on a starting and ending 

point and then interactively draw the tangents 

from the two points by dragging the mouse 

pointer. Besides being slightly more difficult to 

implement, we have to create entirely different 
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interfaces for a Hermite curve and a Bezier 

curve. Then the system would be easier to access 

for a first time user. There was another problem 

that the moving object would not reach the last 

control point (the end point). Instead it was 

stopping slightly behind this point. When a tweak 

was added to make it just end up at that point, the 

movement became jerky and unnatural. We 

realized that the reason for the incomplete and 

jerky motion was that the arc length resolution 

was too large. When we changed to a smaller 

value of resolution the movement became very 

smooth and natural. 

 

6. CONCLUSIONS 

 

For developing the motion along smooth curve, 

we used Java in Netbeans IDE and could be run 

on a computer where installed java any version. 

This paper will be helpful for researchers who 

want to work on realistic motion for animation. 
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